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Effects of surface diffusion on the Eden model
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We study the kinetic roughening in depositions on perimeter sites. For this purpose, we study solid-on-solid
models, modifications of the Eden model which was proposed for describing biological growth of cell colonies.
We consider surface diffusion in vertical and horizontal directions and calculate the surface width and the
correlation function, and show the surface morphologies. In the presence of only a vertical diffusion or both
vertical and horizontal diffusion to local energy minima, the growth models show the Kardar-Parisi-Zhang
behaviors. In contrast to these, the Edwards-Wilkinson behavior dominates the model with both vertical and
horizontal diffusion to local height minima. For these results, we also give an argument based on the calcu-
lation of the step height$S1063-651X96)03206-(

PACS numbg(s): 05.40:+j, 81.10.Aj, 05.70.Ln, 81.15.Hi

I. INTRODUCTION wheren is a white noise and the equation wit=0 corre-

. . ., sponds to the EW equation. It has been known that the EW
Du.rmg. the past d_ecade, much attention has been paid t(—E'ﬁuation describes t?]e surface growth under gravitation and
the kinetic roughening of growing surfaces. The surfacegy; the random deposition with surface diffusiRDSD)
grown in far-from-equilibrium conditions have been found to [6] belongs to this class. The KPZ equation has been consid-
be self-affine, that is, invariant under an anisotropic scalingred to describe the surface growth which is locally normal
and have been investigated in sedimentation, vapor deposy the surfacgthe Eden model7] and the ballistic deposi-
tion, molecular beam epitaxy, bacteria colony formation, pation [8]) or which occurs in the presence of a restriction on
per towels immersed into liquids, etfl]. An important the heights of the neighboring sitfhe restricted solid-on-
quantity in the kinetic roughening is the surface witlithe  solid (SOS model[9]].
root-mean-square value of the surface fluctuation, which has The Eden model, one of the earliest works, was proposed
been expected to obey a finite-size scalif$9 proposed to describe the biological growth of cell colonies. In the
by Family and VicseK2]: Eden model, particles falbn perimeter siteunoccupied

nearest neighbors of occupied sjtegth equal probability
(version A in Ref. [10]), which leads to a locally normal
W(L,t)=[{(h—(h))®) ]2~ Lf(t/L?), (1)  growth to the surface. On the other hand, in most of the
growth models, particles randomly falh substrateand dif-
fuse according to given growth rules. Two representative
whereh(x,t) is the height of the surface ti=d’ +1 dimen-  growth rules regarding surface diffusion may be those em-
sion (d’ is the substrate dimensiprL the lateral size of the ployed in the RDSD and in the Wolf-VillaitWV) model
substratef the growth time,a the roughness exponent de- [11]. The RDSD, where freshly landed particles relax into
scribing a saturated surfacethe dynamic exponent, and the |ocal height minima, is described by the EW equation while
scaling function f(x)~x? (with the growth exponent the WV model, where they relax into local energy minima,
B=alz) for x<1 and f(x)—const forx>1. Here(---)  shows complex crossover behaviors, despite the simple
denotes a spatial average. Thus the surface Widtirows as  growth rule[12]; the WV model has been considered to be
W(t)~t# for 1<t<L? andW(L)~L? for t>L2 described by the equation dh/dt=vV2h—p,V*h

Under the scheme of the FSS, a great deal of work to+\,;V?(Vh)?+ 7.
describe the surface roughness has been carried out in ana-In this work, we consider depositions on perimeter sites,
lytic calculations of continuum growth equations and in nu-that is, the Eden model with surface diffusion. In other
merical simulations of kinetic growth mod€]3]. The criti-  words, the incident particle flux is not uniform over a sub-
cal exponentsr and 8 obtained from the FSS determine the strate but dependent on local slopes of a surface. To our
universality class of continuum equations and growth modknowledge, there have been few works investigating the
els. Representative universality classes are the Edward&den model with surface diffusion or depositions with such
Wilkinson (EW) class [4] and the Kardar-Parisi-Zhang nonuniform incident fluxes. In our growth models, particles
(KPZ) class[5] expressed as the following continuum equa-which randomly fall not on substrates but on perimeter sites
tion: diffuse in vertical and horizontal directions according to the

growth rules employed in the RDSD and the WV model. In
o \ Sec. Il we introduce our growth models. In Sec. Il we
oo N 2 present numerical results and discussions. Section IV is de-
ot vVihE 2 (V)™ 2, @ voted to a brief summary.
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FIG. 1. Deposition rate at each site of the substf@eand . 9
schematic growth rules of modeds (b), B (c), andC (d). One can In t
notice the difference between mod@&sand C in the move of the
dashed particle. FIG. 2. The log-log plots oW vst for model A. The slope of
the guide dotted-line is 1/3. The inset shows the log-log plotvof
Il. THE GROWTH MODELS vs L where the slope of the guide dotted-line is 1/2. Statistical

) . averages were taken on 500 samples.
In our growth models, particles randomly fall on perim-

eter sites. Thus, in view of the substrate, the deposition ratgsymptotic behavior is relatively fast, compared to the origi-
is not the same at each site of the substrate. A simple i3] Eden model. We consider that the fast convergence is
stance is illustrated in Fig.(d). First, we define modeA as  gye to the suppression of vacancies and overhangs achieved
the Eden model only with vertical diffusion. Next, we con- py the vertical diffusion, as by application of noise reduction
sider additional diffusion after the vertical diffusion; par- [13]. We note that SOS models such as mofleand the
ticles diffuse within nearest-neighbor columns according tdestricted SOS model show faster convergence than the Eden
two kinds of growth rulesmodelsB andC). We note that  model| and the ballistic deposition allowing vacancies and
our growth models are all SOS models. The growth rules OBverhangs.
modelsA, B, andC are given in detail as follows. For model B, we obtain «=0.492+0.002 and
Model A A freshly landed particle on a perimeter site 3=0.323+0.001, as shown in Fig. 3. The values ®fand
diffuses only in a vertiqal d_irection and moves to the top Of,B are close to the analytic values of the KPZ equation. As
the deposit, as shown in Fig(t. o shown in the figure, modé@ shows slower convergence than
Model B After the vertical diffusion, the particle is al- 54e|A. To confirm the results obtained from the surface

lowed to diffuse again. It moves to local energy minimum yigih we also calculate the height-difference correlation
within nearest-neighbor interaction, as in the WV model. Se§ction G(r,t) obeying the following scaling ansatz:

Fig. 1(c).

Model C After the vertical diffusion, the particle moves G(r,t)=([h(x+r,t)—h(x,1)]2)~r22g(r/t¥?), (3)
to local height minimum as in the RDSD, instead of local
energy minimum. See Fig.(d).

In the next section, numerical simulations on one-
dimensional substrates show that modalsand B can be
described by the KPZ equatioruE 1/2 and 8=1/3) and
modelC by the EW equation¢=1/2 andB=1/4).

Ill. RESULTS AND DISCUSSIONS =
In this section, we present numerical results of growth =
modelsA, B, andC on one-dimensional substrates. In simu-
lations, we use periodic boundary conditions. First, we cal-
culate the surface widt for three growth models. Figure 2
shows the log-log plot oV vs t for model A. We have
B£=0.326:0.001 very close to 1/3. We also have 3
a=0.507=0.001 very close to 1/2 from the log-log plot of 0 ‘ : :
W vsL as shown in the inset. The values®@find 8 suggest
that modelA is described by the KPZ equation. Since model
A differs from the Eden model only in allowing the vertical £ 3. The log-log plots ofVV vs t for model B, where the
diffusion to the top of the deposit, there is no possibility siope of the guide dotted-line is 1/3. We obtaingdor L =4096
leading to other derivatives di(x) in the KPZ equation. (0). The inset shows the log-log plot ¥¥ vs L where the slope of
Thus we arrive at the conclusion that modebelongs to the  the guide dotted-line is 1/2. Statistical averages were taken on 400
KPZ class. As shown in the figure, the convergence to theo 1000 samples.

In t



53 EFFECTS OF SURFACE DIFFUSION ON THE EDEN MODEL 5645

! o 3.60
a)
[l 4
3.50 F o |
7 3.40 :
§ -2 _ i 0.90
o & b)
- = = g0 -
Zos8of i
© ,
—4 - | [m]
0.88 1 =l
‘ : ‘ L 0.61
-4 -2 0 2 4 —_—r
In (r/tt/z) © QL c)
O
FIG. 4. The scaling plots o6&(r,t) for t=60, 120, 250, 500,
1000, 2000, and 4000 with=2048. We havea=1/2 and )
z=3/2. Statistical averages were taken on 100 samples. The inset  0.60 » S
shows the log-log plot o6 vs t, where the slope 2 of the guide 0.00 0.01 0.02
dotted-line is 2/3. 1/L

FIG. 6. The figure shows the plots @(1t)=a® vs 1L in
saturated regimes for modefs (a), B (b), andC (c). The arrows
indicate the asymptotic values af, where root-mean-square val-
ues of step heights a@~2 for modelA, ~1 for modelB, and
~0.8 for modelC. Statistical averages were taken on 300 to 500
samples.

where the scaling functiong(x)—const for x<1 and
g(x)~x"2® for x> 1. Thus the correlation functioB grows
as G(r)~r2® for r<t? and G(t)~t?# for r>t'2. As
shown in the inset of Fig. 4, we obtajd=0.331+0.002
from the log-log plot ofG(t) vst, whereG(t) was obtained
from the saturated values &f(r,t) in the plots ofG(r,t) vs

r.we a_llso shc_)w the scaling plots Gi(r, t) with a:1/2_ and to the analytic values of the EW equation. This somewhat
z=3/2 in the figure. The perfect data collapse confirms tha%urprising result can be understood in the following way.
modelB belongs to the KPZ class. It has been known thaynitorm incident flux on perimeter sites can be different
the growth rule of tge WV moc;el Iea2ds to other higher-orderom yniform flux on the substrate, if and only if there exist
terms such as-»,V"h and\,V*(Vh)“. Since the nonlinear  gons with heights greater than unity. In mo€iglthose steps
(Vh)< term is the most relevant term in the renormalizationyq ot develop owing to the diffusion to local height minima.
group sense, one can expect that mdsleshows the KPZ 14 yalidate this argument, we caIcuIa(Ee(l,t)=((Vh)2) in

behavior. _ saturated regimes.
Next we investigate modé&l. In contrast to modelé and

B, modelC shows the EW behavior. As shown in Fig. 5, we 20

obtaineda=0.484+ 0.002 andB=0.248+0.001 very close model A
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FIG. 5. The log-log plots ofV vst for modelC. The slope of be

the guide dotted-line is 1/4. The inset shows the log-log pldtvof
vs L where the slope of the guide dotted-line is 1/2. Statistical FIG. 7. The surface morphologies &t 10° for modelsA, B,

averages were taken on 400 to 500 samples. andC.
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As shown in Fig. 6a), the root-mean-square step height IV. SUMMARY
a, whereG(1t—»)=a?, is ~1.9 and independent af for
modelA. This confirms the KPZ behavior of the model. For
modelC, as shown in Fig. @), we havea?(L)~c;—c,/L

To investigate the kinetic roughening in depositions on
perimeter sites, we have studied three growth models as the

(a~0.78), wherec;~0.609 andc,~0.5. In the EW class Eden model with surface diffusion. In the presence of verti-

the saturated values @(11t) are constant with a correction €@ diffusion(modelA) and additional diffusion to local en-

of order 1L [14]. This validates our argument for the Ew €rgy minima(modelB), the models are considered to belong

behavior of modeC. In modelB, a~0.95 anda?(L) does to the Ke_lrdar—Par|S|—_Zhar_1@<PZ) class as the_ orlg!nal _Eden

not show clear dependence bnConsidering flat terraces on Mmodel without any diffusion process. Allowing diffusion to

the surfacea~1 implies the presence of large step-heightslocal height minima instead of local energy minirrodel

Thus we confirm the KPZ behavior of modgl C), the surface roughness can be described by the Edwards-
We also show the surface morphologies. In motliethe ~ Wilkinson (EW) equation. To show these behaviors, we have

surface morphology clearly shows large step-heights whici¢alculated the surface width, the correlation function, and the

can be found on any part of the surface. Eet 256, 42% of averaged step-height and shown the surface morphologies.

the sites have step-heights larger than unity. In m@jeh  The KPZ behaviors of models andB are due to the growth

deep valley is observed as in the WV model and 10% of thdocally normal to surfaces. For mod€él, where few sites

sites have step-heights larger than unity, which is considerebave step heights larger than unity, the deposition on perim-

to be enough to yield the KPZ behavior. In contrast to mod-eter sites does not differ from that on the substrate, and thus

els A and B, one can observe a smooth surface invarianthe model shows the EW behavior.

under the transformation— —h for model C. Moreover,

only seven sites hay& h|> 1. It is considered that this value

less than 3% of total sites is nc_)t gene_ric but due to finite-size ACKNOWLEDGMENTS

effect. Thus for modeC, there is no difference between the

deposition on perimeter sites and that on the substrate, which C.S.R. is supported by the Ministry of Information and

leads to the EW behavior of modeél. By calculating Communication, Korea and is very grateful to Dr. E. H. Lee

G(1t) and showing the surface morphologies, we have confor his support of this work. I.M.K. is supported in part by

firmed the KPZ behaviors of models andB and the EW  KOSEF (Project No. 951-0206-003y2and the Ministry of

behavior of modelC. Education(Project No. BSRI-95-2409 Korea.
[1] T. Vicsek,Fractal Growth Phenomen&nd ed.(World Scien- (Univ. of Calif. Press, Berkeley, 1961Vol. 4, p. 223.
tific, Singapore, 1992 and references therein. [8] P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys.
[2] F. Family and T. Vicsek, J. Phys. A8, L75 (1985. Rev. A 34, 5091(1986.
[3] Dynamics of Fractal Surfacesdited by F. Family and T. [9]J. M. Kim and J. M. Kosterlitz, Phys. Rev. Letf2, 2289
Vicsek (World Scientific, Singapore, 1991J. Krug and H. (1989.

Spohn, inSolids Far From Equilibrium: Growth, Morphology [10] R. Jullien and R. Botet, J. Phys. 18, 2279(1985.
and Defects edited by C. GodrechéCambridge University [11] D. E. Wolf and J. Villain, Europhys. Letfl3, 389 (1990.

Press, New York, 1991 [12] S. Das Sarma and S. V. Ghaisas, Phys. Rev. 168t.3762
[4] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser. (1992; J. Krug, M. Plischke, and M. Siegeiibid. 70, 3271

A 381, 17(1982. (1993; M. Kotrla, A. C. Levi, and P. 8ilauer, Europhys.
[5] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lé&8, Lett. 20, 25(1992; P. Snilauer and M. Kotrla, Phys. Rev. B

889 (1986. 49, 5769(1994); C. S. Ryu and I. M. Kim, Phys. Rev. &,
[6] F. Family, J. Phys. A9, L441 (1986. 3069(1999; 52, 2424(1995.

[7] M. Eden, inProceedings of the Fourth Berkeley Symposium on[13] J. Kertég and D. E. Wolf, J. Phys. &1, 747(1988.
Mathematics Statistics and Probabilitgdited by F. Neyman [14] K. Park, B. Kahng, and S. S. Kim, Physica2A0 146(1994).



