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We study the kinetic roughening in depositions on perimeter sites. For this purpose, we study solid-on-solid
models, modifications of the Eden model which was proposed for describing biological growth of cell colonies.
We consider surface diffusion in vertical and horizontal directions and calculate the surface width and the
correlation function, and show the surface morphologies. In the presence of only a vertical diffusion or both
vertical and horizontal diffusion to local energy minima, the growth models show the Kardar-Parisi-Zhang
behaviors. In contrast to these, the Edwards-Wilkinson behavior dominates the model with both vertical and
horizontal diffusion to local height minima. For these results, we also give an argument based on the calcu-
lation of the step heights.@S1063-651X~96!03206-0#

PACS number~s!: 05.40.1j, 81.10.Aj, 05.70.Ln, 81.15.Hi

I. INTRODUCTION

During the past decade, much attention has been paid to
the kinetic roughening of growing surfaces. The surfaces
grown in far-from-equilibrium conditions have been found to
be self-affine, that is, invariant under an anisotropic scaling
and have been investigated in sedimentation, vapor deposi-
tion, molecular beam epitaxy, bacteria colony formation, pa-
per towels immersed into liquids, etc.@1#. An important
quantity in the kinetic roughening is the surface widthW, the
root-mean-square value of the surface fluctuation, which has
been expected to obey a finite-size scaling~FSS! proposed
by Family and Vicsek@2#:

W~L,t ![@Š~h2^h&!2‹#1/2;La f ~ t/Lz!, ~1!

whereh(x,t) is the height of the surface ind5d811 dimen-
sion (d8 is the substrate dimension!, L the lateral size of the
substrate,t the growth time,a the roughness exponent de-
scribing a saturated surface,z the dynamic exponent, and the
scaling function f (x);xb ~with the growth exponent
b5a/z) for x!1 and f (x)→const for x@1. Here ^•••&
denotes a spatial average. Thus the surface widthW grows as
W(t);tb for 1!t!Lz andW(L);La for t@Lz.

Under the scheme of the FSS, a great deal of work to
describe the surface roughness has been carried out in ana-
lytic calculations of continuum growth equations and in nu-
merical simulations of kinetic growth models@3#. The criti-
cal exponentsa andb obtained from the FSS determine the
universality class of continuum equations and growth mod-
els. Representative universality classes are the Edwards-
Wilkinson ~EW! class @4# and the Kardar-Parisi-Zhang
~KPZ! class@5# expressed as the following continuum equa-
tion:
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l
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~¹h!21h, ~2!

whereh is a white noise and the equation withl50 corre-
sponds to the EW equation. It has been known that the EW
equation describes the surface growth under gravitation and
that the random deposition with surface diffusion~RDSD!
@6# belongs to this class. The KPZ equation has been consid-
ered to describe the surface growth which is locally normal
to the surface~the Eden model@7# and the ballistic deposi-
tion @8#! or which occurs in the presence of a restriction on
the heights of the neighboring sites@the restricted solid-on-
solid ~SOS! model @9##.

The Eden model, one of the earliest works, was proposed
to describe the biological growth of cell colonies. In the
Eden model, particles fallon perimeter sites~unoccupied
nearest neighbors of occupied sites! with equal probability
~versionA in Ref. @10#!, which leads to a locally normal
growth to the surface. On the other hand, in most of the
growth models, particles randomly fallon substratesand dif-
fuse according to given growth rules. Two representative
growth rules regarding surface diffusion may be those em-
ployed in the RDSD and in the Wolf-Villain~WV! model
@11#. The RDSD, where freshly landed particles relax into
local height minima, is described by the EW equation while
the WV model, where they relax into local energy minima,
shows complex crossover behaviors, despite the simple
growth rule@12#; the WV model has been considered to be
described by the equation ]h/]t5n¹2h2n1¹

4h
1l1¹

2(¹h)21h.
In this work, we consider depositions on perimeter sites,

that is, the Eden model with surface diffusion. In other
words, the incident particle flux is not uniform over a sub-
strate but dependent on local slopes of a surface. To our
knowledge, there have been few works investigating the
Eden model with surface diffusion or depositions with such
nonuniform incident fluxes. In our growth models, particles
which randomly fall not on substrates but on perimeter sites
diffuse in vertical and horizontal directions according to the
growth rules employed in the RDSD and the WV model. In
Sec. II we introduce our growth models. In Sec. III we
present numerical results and discussions. Section IV is de-
voted to a brief summary.
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II. THE GROWTH MODELS

In our growth models, particles randomly fall on perim-
eter sites. Thus, in view of the substrate, the deposition rate
is not the same at each site of the substrate. A simple in-
stance is illustrated in Fig. 1~a!. First, we define modelA as
the Eden model only with vertical diffusion. Next, we con-
sider additional diffusion after the vertical diffusion; par-
ticles diffuse within nearest-neighbor columns according to
two kinds of growth rules~modelsB andC). We note that
our growth models are all SOS models. The growth rules of
modelsA, B, andC are given in detail as follows.

Model A. A freshly landed particle on a perimeter site
diffuses only in a vertical direction and moves to the top of
the deposit, as shown in Fig. 1~b!.

Model B. After the vertical diffusion, the particle is al-
lowed to diffuse again. It moves to local energy minimum
within nearest-neighbor interaction, as in the WV model. See
Fig. 1~c!.

Model C. After the vertical diffusion, the particle moves
to local height minimum as in the RDSD, instead of local
energy minimum. See Fig. 1~d!.

In the next section, numerical simulations on one-
dimensional substrates show that modelsA and B can be
described by the KPZ equation (a51/2 andb51/3) and
modelC by the EW equation (a51/2 andb51/4).

III. RESULTS AND DISCUSSIONS

In this section, we present numerical results of growth
modelsA, B, andC on one-dimensional substrates. In simu-
lations, we use periodic boundary conditions. First, we cal-
culate the surface widthW for three growth models. Figure 2
shows the log-log plot ofW vs t for model A. We have
b50.32660.001 very close to 1/3. We also have
a50.50760.001 very close to 1/2 from the log-log plot of
W vsL as shown in the inset. The values ofa andb suggest
that modelA is described by the KPZ equation. Since model
A differs from the Eden model only in allowing the vertical
diffusion to the top of the deposit, there is no possibility
leading to other derivatives ofh(x) in the KPZ equation.
Thus we arrive at the conclusion that modelA belongs to the
KPZ class. As shown in the figure, the convergence to the

asymptotic behavior is relatively fast, compared to the origi-
nal Eden model. We consider that the fast convergence is
due to the suppression of vacancies and overhangs achieved
by the vertical diffusion, as by application of noise reduction
@13#. We note that SOS models such as modelA and the
restricted SOS model show faster convergence than the Eden
model and the ballistic deposition allowing vacancies and
overhangs.

For model B, we obtain a50.49260.002 and
b50.32360.001, as shown in Fig. 3. The values ofa and
b are close to the analytic values of the KPZ equation. As
shown in the figure, modelB shows slower convergence than
modelA. To confirm the results obtained from the surface
width, we also calculate the height-difference correlation
functionG(r ,t) obeying the following scaling ansatz:

G~r ,t ![^@h~x1r ,t !2h~x,t !#2&;r 2ag~r /t1/z!, ~3!

FIG. 1. Deposition rate at each site of the substrate~a! and
schematic growth rules of modelsA ~b!, B ~c!, andC ~d!. One can
notice the difference between modelsB andC in the move of the
dashed particle. FIG. 2. The log-log plots ofW vs t for modelA. The slope of

the guide dotted-line is 1/3. The inset shows the log-log plot ofW
vs L where the slope of the guide dotted-line is 1/2. Statistical
averages were taken on 500 samples.

FIG. 3. The log-log plots ofW vs t for model B, where the
slope of the guide dotted-line is 1/3. We obtainedb for L54096
(h). The inset shows the log-log plot ofW vsL where the slope of
the guide dotted-line is 1/2. Statistical averages were taken on 400
to 1000 samples.
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where the scaling functiong(x)→const for x!1 and
g(x);x22a for x@1. Thus the correlation functionG grows
as G(r );r 2a for r!t1/z and G(t);t2b for r@t1/z. As
shown in the inset of Fig. 4, we obtainb50.33160.002
from the log-log plot ofG(t) vs t, whereG(t) was obtained
from the saturated values ofG(r ,t) in the plots ofG(r ,t) vs
r . We also show the scaling plots ofG(r ,t) with a51/2 and
z53/2 in the figure. The perfect data collapse confirms that
modelB belongs to the KPZ class. It has been known that
the growth rule of the WV model leads to other higher-order
terms such as2n1¹

4h andl1¹
2(¹h)2. Since the nonlinear

(¹h)2 term is the most relevant term in the renormalization
group sense, one can expect that modelB shows the KPZ
behavior.

Next we investigate modelC. In contrast to modelsA and
B, modelC shows the EW behavior. As shown in Fig. 5, we
obtaineda50.48460.002 andb50.24860.001 very close

to the analytic values of the EW equation. This somewhat
surprising result can be understood in the following way.
Uniform incident flux on perimeter sites can be different
from uniform flux on the substrate, if and only if there exist
steps with heights greater than unity. In modelC, those steps
do not develop owing to the diffusion to local height minima.
To validate this argument, we calculateG(1,t)5^(¹h)2& in
saturated regimes.

FIG. 6. The figure shows the plots ofG(1,t)5a2 vs 1/L in
saturated regimes for modelsA ~a!, B ~b!, andC ~c!. The arrows
indicate the asymptotic values ofa2, where root-mean-square val-
ues of step heights area;2 for modelA, ;1 for modelB, and
;0.8 for modelC. Statistical averages were taken on 300 to 500
samples.

FIG. 7. The surface morphologies att5105 for modelsA, B,
andC.

FIG. 4. The scaling plots ofG(r ,t) for t560, 120, 250, 500,
1000, 2000, and 4000 withL52048. We havea51/2 and
z53/2. Statistical averages were taken on 100 samples. The inset
shows the log-log plot ofG vs t, where the slope 2b of the guide
dotted-line is 2/3.

FIG. 5. The log-log plots ofW vs t for modelC. The slope of
the guide dotted-line is 1/4. The inset shows the log-log plot ofW
vs L where the slope of the guide dotted-line is 1/2. Statistical
averages were taken on 400 to 500 samples.
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As shown in Fig. 6~a!, the root-mean-square step height
a, whereG(1,t→`)[a2, is'1.9 and independent ofL for
modelA. This confirms the KPZ behavior of the model. For
modelC, as shown in Fig. 6~c!, we havea2(L);c12c2 /L
(a'0.78), wherec1'0.609 andc2'0.5. In the EW class,
the saturated values ofG(1,t) are constant with a correction
of order 1/L @14#. This validates our argument for the EW
behavior of modelC. In modelB, a'0.95 anda2(L) does
not show clear dependence onL. Considering flat terraces on
the surface,a;1 implies the presence of large step-heights.
Thus we confirm the KPZ behavior of modelB.

We also show the surface morphologies. In modelA, the
surface morphology clearly shows large step-heights which
can be found on any part of the surface. ForL5256, 42% of
the sites have step-heights larger than unity. In modelB, a
deep valley is observed as in the WV model and 10% of the
sites have step-heights larger than unity, which is considered
to be enough to yield the KPZ behavior. In contrast to mod-
els A and B, one can observe a smooth surface invariant
under the transformationh→2h for model C. Moreover,
only seven sites haveu¹hu.1. It is considered that this value
less than 3% of total sites is not generic but due to finite-size
effect. Thus for modelC, there is no difference between the
deposition on perimeter sites and that on the substrate, which
leads to the EW behavior of modelC. By calculating
G(1,t) and showing the surface morphologies, we have con-
firmed the KPZ behaviors of modelsA andB and the EW
behavior of modelC.

IV. SUMMARY

To investigate the kinetic roughening in depositions on
perimeter sites, we have studied three growth models as the
Eden model with surface diffusion. In the presence of verti-
cal diffusion~modelA) and additional diffusion to local en-
ergy minima~modelB), the models are considered to belong
to the Kardar-Parisi-Zhang~KPZ! class as the original Eden
model without any diffusion process. Allowing diffusion to
local height minima instead of local energy minima~model
C), the surface roughness can be described by the Edwards-
Wilkinson ~EW! equation. To show these behaviors, we have
calculated the surface width, the correlation function, and the
averaged step-height and shown the surface morphologies.
The KPZ behaviors of modelsA andB are due to the growth
locally normal to surfaces. For modelC, where few sites
have step heights larger than unity, the deposition on perim-
eter sites does not differ from that on the substrate, and thus
the model shows the EW behavior.

ACKNOWLEDGMENTS

C.S.R. is supported by the Ministry of Information and
Communication, Korea and is very grateful to Dr. E. H. Lee
for his support of this work. I.M.K. is supported in part by
KOSEF ~Project No. 951-0206-003-2! and the Ministry of
Education~Project No. BSRI-95-2409!, Korea.

@1# T. Vicsek,Fractal Growth Phenomena, 2nd ed.~World Scien-
tific, Singapore, 1992!, and references therein.

@2# F. Family and T. Vicsek, J. Phys. A18, L75 ~1985!.
@3# Dynamics of Fractal Surfaces, edited by F. Family and T.

Vicsek ~World Scientific, Singapore, 1991!; J. Krug and H.
Spohn, inSolids Far From Equilibrium: Growth, Morphology
and Defects, edited by C. Godreche~Cambridge University
Press, New York, 1991!.

@4# S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.
A 381, 17 ~1982!.

@5# M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.56,
889 ~1986!.

@6# F. Family, J. Phys. A19, L441 ~1986!.
@7# M. Eden, inProceedings of the Fourth Berkeley Symposium on

Mathematics Statistics and Probability, edited by F. Neyman

~Univ. of Calif. Press, Berkeley, 1961!, Vol. 4, p. 223.
@8# P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Phys.

Rev. A 34, 5091~1986!.
@9# J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett.62, 2289

~1989!.
@10# R. Jullien and R. Botet, J. Phys. A18, 2279~1985!.
@11# D. E. Wolf and J. Villain, Europhys. Lett.13, 389 ~1990!.
@12# S. Das Sarma and S. V. Ghaisas, Phys. Rev. Lett.69, 3762

~1992!; J. Krug, M. Plischke, and M. Siegert,ibid. 70, 3271
~1993!; M. Kotrla, A. C. Levi, and P. Sˇmilauer, Europhys.
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